To create and train a deep learning model costs a lot in comparison to ascertain a trained model. So, a trained model is considered as the intellectual property (IP) of the person who creates such model. However, there is every chance of illegal copying, redistributing and abusing of any of these high-performance models by the malicious users. To protect against such menaces, a few numbers of deep neural networks (DNN) IP security techniques have been developed recently. The present study aims at examining the existing DNN IP security activities. In the first instance, there is a proposal of taxonomy in favor of DNN IP protection techniques from the perspective of six aspects such as scenario, method, size, category, function, and target models. Afterwards, this paper focuses on the challenges faced by these methods and their capability of resisting the malicious attacks at different levels by providing proactive protection. An analysis is also made regarding the potential threats to DNN IP security techniques from various perspectives like modification of models, evasion and active attacks.
 Apart from that this paper look into the methodical assessment. The study explores the future research possibilities on DNN IP security by considering different challenges it would confront in the process of its operations.
 Result Statement: A high-performance deep neural Networks (DNN) model is costlier than the trained DNN model. It is considered as an intellectual property (IP) of the person who is responsible for creating DNN model. The infringement of the Intellectual Property of DNN model is a grave concern in recent years. This article summarizes current DNN IP security works by focusing on the limitations/ challenges they confront. It also considers the model in question's capacity for protection and resistance against various stages of attacks.