In this paper, we consider an initial-value problem for a second-order neutral Volterra integro-differential equation. First, we give the stability inequality indicating the stability of the problem with respect to the right-side and initial conditions. Further, we develop a finite difference method that uses for differential part second difference derivative, for the integral part appropriate composite trapezoidal and midpoint rectangle rules followed by second-order accurate difference quantities at intermediate points. Error estimate for the approximate solution is established, which shows the second-order accuracy. Finally, the numerical experiments are presented confirming the accuracy of the proposed scheme.