This survey extends and refines the existing definitions of integrity and protection level in localization systems (localization as a broad term, i.e., not limited to GNSS-based localization). In our definition, we study integrity from two aspects: quality and quantity. Unlike existing reviews, this survey examines integrity methods covering various localization techniques and sensors. We classify localization techniques as optimization-based, fusion-based, and SLAM-based. A new classification of integrity methods is introduced, evaluating their applications, effectiveness, and limitations. Comparative tables summarize strengths and gaps across key criteria, such as algorithms, evaluation methods, sensor data, and more. The survey presents a general probabilistic model addressing diverse error types in localization systems. Findings reveal a significant research imbalance: 73.3% of surveyed papers focus on GNSS-based methods, while only 26.7% explore non-GNSS approaches like fusion, optimization, or SLAM, with few addressing protection level calculations. Robust modeling is highlighted as a promising integrity method, combining quantification and qualification to address critical gaps. This approach offers a unified framework for improving localization system reliability and safety. This survey provides key insights for developing more robust localization systems, contributing to safer and more efficient autonomous operations.
Read full abstract