Antrodia cinnamomea is a precious edible and medicinal fungus with activities of antitumor, antivirus, and immunoregulation. Fe2+ was found to promote the asexual sporulation of A. cinnamomea markedly, but the molecular regulatory mechanism of the effect is unclear. In the present study, comparative transcriptomics analysis using RNA sequencing (RNA-seq) and real time quantitative PCR (RT-qPCR) were conducted on A. cinnamomea mycelia cultured in the presence or absence of Fe2+ to reveal the molecular regulatory mechanisms underlying iron-ion-promoted asexual sporulation. The obtained mechanism is as follows: A. cinnamomea acquires iron ions through reductive iron assimilation (RIA) and siderophore-mediated iron assimilation (SIA). In RIA, ferrous iron ions are directly transported into cells by the high-affinity protein complex formed by a ferroxidase (FetC) and an Fe transporter permease (FtrA). In SIA, siderophores are secreted externally to chelate the iron in the extracellular environment. Then, the chelates are transported into cells through the siderophore channels (Sit1/MirB) on the cell membrane and hydrolyzed by a hydrolase (EstB) in the cell to release iron ions. The O-methyltransferase TpcA and the regulatory protein URBS1 promote the synthesis of siderophores. HapX and SreA respond to and maintain the balance of the intercellular concentration of iron ions. Furthermore, HapX and SreA promote the expression of flbD and abaA, respectively. In addition, iron ions promote the expression of relevant genes in the cell wall integrity signaling pathway, thereby accelerating the cell wall synthesis and maturation of spores. This study contributes to the rational adjustment and control of the sporulation of A. cinnamomea and thereby improves the efficiency of the preparation of inoculum for submerged fermentation.
Read full abstract