We describe three single-scan probabilistic data association (PDA) based algorithms for tracking manoeuvering targets in clutter. These algorithms are derived by integrating the interacting multiple model (IMM) estimation algorithm with the PDA approximation. Each IMM model a posteriori state estimate probability density function (pdf) is approximated by a single Gaussian pdf. Each algorithm recursively updates the probability of target existence, in the manner of integrated PDA (IPDA). The probability of target existence is a track quality measure, which can be used for false track discrimination. The first algorithm presented, IMM-IPDA, is a single target tracking algorithm. Two multitarget tracking algorithms are also presented. The IMM-JIPDA algorithm calculates a posteriori probabilities of all measurement to track allocations, in the manner of the joint IPDA (JIPDA). The number of measurement to track allocations grows exponentially with the number of shared measurements and the number of tracks which share the measurements. Therefore, IMM-JIPDA can only be used in situations with a small number of crossing targets and low clutter measurement density. The linear multitarget IMM-IPDA (IMM-LMIPDA) is also a multitarget tracking algorithm, which achieves the multitarget capabilities by integrating linear multitarget (LM) method with IMM-IPDA. When updating one track using the LM method, the other tracks modulate the clutter measurement density and are subsequently ignored. In this fashion, LM achieves multitarget capabilities using the number of operations which are linear in the: number of measurements and the number of tracks, and can be used in complex scenarios, with dense clutter and a large number of targets.
Read full abstract