We propose and demonstrate a novel O-band wavelength division multiplexing (WDM) optical transceiver enabled by the hybrid photonic integration of indium phosphide (InP) components into a polymer-based photonic motherboard called PolyBoard. The optical engine hosts an eight-fold InP electro-absorption modulated laser (EML) array at the transmitter part exhibiting >35GHz electro-optical bandwidth and an eight-fold InP photodiode (PD) array at the receiver part with 50 GHz bandwidth, butt-end coupled to the PolyBoard motherboard, which accommodates passive arrayed waveguide gratings (AWGs) at the transmitter and receiver sides, responsible for performing the wavelength multiplexing and demultiplexing functionalities, respectively. What we believe to be a novel thin-film-based O-band half-wave plate is placed at the receiver side AWG, ensuring the polarization insensitivity of the prototype. The optical engine’s design is discussed in the manuscript, demonstrating experimental results from its static and dynamic evaluation. Individual characterization of the transmitter and receiver sides of the optical engine is presented before evaluating the optical engine as a whole in a loopback configuration. The obtained results underscore the potential of the proposed hybrid photonic integrated transceiver for supporting 800 Gb/s capacity in intra-datacenter optical interconnects for transmission distances up to 2 km.