With the rapid transition of Industry 4.0 to 5.0, modern industrial physio-chemical processes are characterized by two critical challenges: process safety and the quality of the final product. Traditional industrial monitoring methods have low reliability in accuracy and robustness, and they are inefficiently providing satisfactory results. This paper introduces a novel integration technique that employs machine learning (ML) to tackle the challenges associated with real industrial monitoring in physical and industrial processes. The proposed framework integrates distributed canonical correlation analysis - R-vine copula (DCCA-RVC), global local preserving projection (GLPP), and 2-Dimensional Deng information entropy (2-DDE). The framework's ability and productivity are assessed utilizing existing approaches such as wavelet-PCA, MRSAE, and DALSTM-AE and the new proposed novel integrated machine learning-based (DCCA-RVC) approach as benchmarks for model performance. The proposed novel approach has been validated by testing it on the ethanol-water system distillation column (DC) and Tennessee Eastman Process (TEP), utilizing it as actual industrial benchmarks. The results demonstrate that the novel integration ML-technique (DCCA-RVC) T22 – GLP monitoring graphs for the fault class type 1 in the distillation column showed a (FAR) of 0 %, a (FDR) of 100 %, a precision of 100 %, F1-score of 100 % and an accuracy of 100 %. However, for the TEP process failure event 13, the (FAR) was 0 %, the (FDR) was 99 %, the accuracy was 100 %, the F1-score was 99.5 %, and the accuracy was 99.5 %.
Read full abstract