In this paper, we consider an initial‐boundary value problem for a parabolic equation with nonlinear boundary conditions. The solution to the problem can be expressed as a convolution integral of a Green's function and two unknown functions. We change the problem to a system of two nonlinear Volterra integral equations of convolution type. By using an explicit procedure on the basis of Sinc‐function properties, the resulting integral equations are replaced by a system of nonlinear algebraic equations, whose solution yields an accurate approximate solution to the parabolic problem. Some examples are considered to illustrate the ability of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.
Read full abstract