This paper focuses on assessing the effectiveness of applying orientation angle calibration to polarimetric synthetic aperture radar (PolSAR) data for soil moisture estimation. We employ Cloude-decomposition-based method to estimate the orientation angle because it can relate a scatter-distributed pixel to its major component of an equivalent "pure target," use the Jet Propulsion Laboratory/Airborne Synthetic Aperture Radar L-band fully polarimetric data to validate the proposed method, and observe results in good agreement after orientation angle compensation is employed. Specifically, root mean square errors of measured radar backscattering coefficients σ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">hh</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sup> and σ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">vv</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sup> and copolarization ratio versus advanced integral equation model predictions are reduced significantly from 1.95, 1.33, and 2.03 dB to 1.30, 1.15, and 1.43 dB, respectively. The compensated copolarized backscattering coefficients are also used as inputs to a novel inversion model to estimate the dielectric factor R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">hh</sub> and volumetric soil moisture m <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">v</sub> . The results show that the estimation errors are reduced significantly from 0.075 to 0.054 and 0.056 to 0.041 for R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">hh</sub> and m <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">v</sub> , respectively. This paper demonstrates the advantage of orientation angle calibration as a preprocessing for estimating bare soil moisture, particularly in agricultural areas, and the preponderance of fully PolSAR data on soil moisture estimation over dual and single polarizations.