We study transitions from chaotic to integrable Hamiltonians in the double scaled Sachdev-Ye-Kitaev (SYK) and p-spin systems. The dynamics of our models is described by chord diagrams with two species. We begin by developing a path integral formalism of coarse graining chord diagrams with a single species of chords, which has the same equations of motion as the bilocal (GΣ) Liouville action, yet appears otherwise to be different and in particular well defined. We then develop a similar formalism for two types of chords, allowing us to study different types of deformations of double scaled SYK and in particular a deformation by an integrable Hamiltonian. The system has two distinct thermodynamic phases: one is continuously connected to the chaotic SYK Hamiltonian, the other is continuously connected to the integrable Hamiltonian, separated at low temperature by a first order phase transition. We also analyze the phase diagram for generic deformations, which in some cases includes a zero-temperature phase transition. Published by the American Physical Society 2024
Read full abstract