Relativistic Hamiltonian systems of n degrees of freedom in static curved spaces are considered. The source of space-time curvature is a scalar potential V(q)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$V(\\varvec{q})$$\\end{document}. In the limit of weak potential 2V(q)/mc2≪1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$2V(\\varvec{q})/mc^2\\ll 1$$\\end{document}, and small momentum |p|/mc≪1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|\\varvec{p} |/ mc\\ll 1$$\\end{document}, these systems transform into the corresponding non-relativistic flat Hamiltonian’s with the standard sum of kinetic energy plus potential V(q)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$V(\\varvec{q})$$\\end{document}. We compare the dynamics of the classical and the corresponding relativistic curved counterparts on examples of important physical models: the Hénon–Heiles system, the Armbruster–Guckenheimer–Kim galactic system and swinging Atwood’s machine. Our main results are formulated for relativistic Hamiltonian systems with homogeneous potentials of non-zero integer degree k of homogeneity. First, we show that the integrability of a non-relativistic flat Hamiltonian with a homogeneous potential is a necessary condition for the integrability of its relativistic counterpart in curved space-time with the same homogeneous potential or with a non-homogeneous potential that the lowest homogenous part coincides with this homogeneous potential. Moreover, we formulate necessary integrability conditions for relativistic Hamiltonian systems with homogeneous potentials in curved space-time. These conditions were obtained from analysis of the differential Galois group of variational equations along a particular straight-line solution defined by a non-zero vector d\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\varvec{d}$$\\end{document} satisfying V′(d)=γd\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$V'(\\varvec{d})=\\gamma \\varvec{d}$$\\end{document} for a certain γ≠0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma \ e 0$$\\end{document}. They are very strong: if the relativistic system is integrable in the Liouville sense, then either k=±2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$k=\\pm 2$$\\end{document}, or all non-trivial eigenvalues of the re-scaled Hessian γ-1V′′(d)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma ^{-1}V''(\\varvec{d})$$\\end{document} are either 0, or 1. Certain integrable relativistic systems are presented.