Abstract

Let $F(x)$ be an irreducible polynomial with integer coefficients and degree at least 2. For $x\ge z\ge y\ge 2$, denote by $H_F(x, y, z)$ the number of integers $n\le x$ such that $F(n)$ has at least one divisor $d$ with $y<d\le z$. We determine the order of magnitude of $H_F(x, y, z)$ uniformly for $y+y/\log^C y < z\le y^2$ and $y\le x^{1-\delta}$, showing that the order is the same as the order of $H(x,y,z)$, the number of positive integers $n\le x$ with a divisor in $(y,z]$. Here $C$ is an arbitrarily large constant and $\delta>0$ is arbitrarily small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.