Background: despite evidence for mutually reinforcing effects of serum uric acid (SUA) and lipids, the effects of uric levels on pancreatic steatosis are not well-established. In this study, the relationship between low concentrations of uric acid and pancreatic steatosis was evaluated. Methods: forty C57BL/6J mice were fed a diet of high uric acid (HU), high fat (HF), high uric acid and high fat (HUHF), and normal control (NC) (10 mice in each group). Weight was measured weekly. Ultrasonography was performed to observe the pancreatic echo intensity of all mice before the end of feeding. Subsequently, peripheral blood was taken for biochemical examination. Intact pancreatic tissues were taken, part of which was used for pathological examination, part of which was used for PCR experiments and Western Blot experiments to obtain glycerophospholipid-associated mRNA data and protein levels. Results: body weight was significantly higher in the HF group than in the other three groups. Higher uric acid matched lower total cholesterol and triglyceride, matched higher low-density lipoprotein, and matched equal high-density lipoprotein. Ultrasound images and HE staining of pancreatic tissues of mice showed that higher uric acid matched lower fat content. The mRNA levels of phospholipase A2 group IB were highest in high uric acid group, while relative protein expression levels were lowest in high uric acid and control groups. Phospholipase A2 group IIA showed the opposite patterns. Conclusions: elevated serum uric acid at low concentrations can inhibit pancreatic steatosis, which is modulated via the glycerophospholipid metabolic pathway.
Read full abstract