The foot structure of molluscan (clam) catch muscle cells was studied from the structural and biochemical standpoints. In vertebrate cross striated muscle cells, foot structures are situated in the interspaces between T-tubules and sarcoplasmic reticula (SRs). By contrast, T-tubules were not observed in clam catch muscle cells, but foot structures were ultrastructurally identified in the interspaces between the SRs and cell membranes. We isolated the SR fraction from muscle cells which contained vesicles with SRs and cell membranes. Foot structures were also observed in the SR fraction by thin sectioning. The size and shape of the foot structure in both intact muscle cells and the SR fractions appeared to be slightly smaller than those of vertebrates. However, the molecular weight of the foot structures (foot proteins) as determined by SDS-PAGE (450 kD) was similar to ryanodine receptors (RyRs) which were reported previously in cross striated muscle cells from pecten and vertebrates. The protein showing the 450 kD band reacted to an anti-ryanodine receptor by Western blotting. These findings are discussed in comparison with previous studies of foot structures and RyRs of vertebrates and invertebrates.