Suspensions of intact liver cells were prepared from 36 male NMRI mice of different age after perfusion of the liver with ice-cold calcium- and magnesium-free phosphate buffer (CMF). The suspensions of the isolated hepatocytes were smeared on slides, fixed, hydrolized and stained by fluorescent acriflavine-Schiff-Feulgen reaction. The number of nuclei per cell was determined in a phase-contrast microscope. Quantitative fluorescent cytophotometric measurements of nuclear Feulgen-DNA were performed on individual nuclei. At the age of 0.5 month, 55% of the hepatocytes were found to be mononuclear, 45% binuclear. In the animal groups aged 1 month, 1.5 months, 3 months, 6 months and 12 months, the percentage of binuclear hepatocytes remained constant at about 80%. Very few liver cells with 3 or 4 nuclei were detected. Feulgen-DNA-measurements revealed a predominance of 2c and 4c nuclei at ages 1 month and 1.5 months with logarithmic increase of 8c nuclei and a decrease of the 2c nuclei. From 1.5 months on 16c nuclei were found, which never exceeded 8%. When total DNA-ploidy of the hepatocytes was calculated similar kinetics at a higher ploidy level were observed. 2c hepatocytes existed in small percentages at very young ages up to 1.5 months, but were also occasionally found in older animals. With increasing age the number of 16c hepatocytes increased logarithmically with a concomitant decrease of the 4c hepatocytes. The percentage of 8c liver cells remained more or less constant. Few hepatocytes with a 32c total DNA content were found in mice aged 3 months and older. In one-year-old mice the mean DNA-ploidy was calculated to be 5.8c per liver nucleus and 10.0c per whole hepatocyte.