Clasmatodendrosis is a kind of astroglial degeneration pattern which facilitates excessive autophagy. Although abnormal mitochondrial elongation is relevant to this astroglial degeneration, the underlying mechanisms of aberrant mitochondrial dynamics are still incompletely understood. Protein disulfide isomerase (PDI) is an oxidoreductase in the endoplasmic reticulum (ER). Since PDI expression is downregulated in clasmatodendritic astrocytes, PDI may be involved in aberrant mitochondrial elongation in clasmatodendritic astrocytes. In the present study, 26% of CA1 astrocytes showed clasmatodendritic degeneration in chronic epilepsy rats. 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; bardoxolone methyl or RTA 402) and SN50 (a nuclear factor-κB (NF-κB) inhibitor) ameliorated the fraction of clasmatodendritic astrocytes to 6.8 and 8.1% in CA1 astrocytes, accompanied by the decreases in lysosomal-associated membrane protein 1 (LAMP1) expression and microtubule-associated protein 1A/1B light-chain 3 (LC3)-II/LC3-I ratio, indicating the reduced autophagy flux. Furthermore, CDDO-Me and SN50 reduced NF-κB S529 fluorescent intensity to 0.6- and 0.57-fold of vehicle-treated animal level, respectively. CDDO-Me and SN50 facilitated mitochondrial fission in CA1 astrocytes, independent of dynamin-related protein 1 (DRP1) S616 phosphorylation. In chronic epilepsy rats, total PDI protein, S-nitrosylated PDI (SNO-PDI), and SNO-DRP1 levels were 0.35-, 0.34- and 0.45-fold of control level, respectively, in the CA1 region and increased CDDO-Me and SN50. Furthermore, PDI knockdown resulted in mitochondrial elongation in intact CA1 astrocytes under physiological condition, while it did not evoke clasmatodendrosis. Therefore, our findings suggest that NF-κB-mediated PDI inhibition may play an important role in clasmatodendrosis via aberrant mitochondrial elongation.