Abstract
The hippocampal CA1 region is most susceptible to cerebral ischemia in both rodents and humans, whereas CA3 is remarkably resistant. Here, we investigated the possible role of membrane lipids in differential susceptibility in these regions. Transient ischemia was induced in rats via bilateral occlusion of common carotid arteries and membrane lipids were analyzed by mass spectrometry. While lipid profile differences between the intact CA1 and CA3 were rather minor, ischemia caused significant pyramidal cell death with concomittant reduction of phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, plasmalogen and sphingomyelin only in CA1. The phospholipid loss was evenly distributed in most molecular species. Ischemia also significantly increased cell death mediator ceramides only in CA1. Our data suggests that differential susceptibility to ischemia between CA1 and CA3 is not linked to their unique phospholipid profile. Also, selective activation of phospholipase A2, which primarily releases polyunsaturated fatty acids, might not be characteristic to cell death in CA1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Prostaglandins, Leukotrienes and Essential Fatty Acids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.