Diabetes Mellitus (DM) is one of the most important public health problems, and new antidiabetic drugs with fewer side effects are urgently needed. Here, we measured the antidiabetic effects of an antioxidant peptide (Ala-Phe-Tyr-Arg-Trp, AFYRW) from Tartary Buckwheat Albumin (TBA) in a high-fat diet/streptozotocin (HFD/STZ)-induced diabetic mouse model. The data showed that AFYRW suppressed hepatocyte steatosis and triglycerides while ameliorating insulin resistance in mice. Successively, the influence of AFYRW on aberrant protein glycosylation in diabetic mice was further investigated by lectin microarrays. The results suggested AFYRW could restore the expression of GalNAc, GalNAcα1-3Gal and GalNAcα1-3Galβ1-3/4Glc recognized by PTL-I, Siaα2-3Galβ1-4Glc(NAc)/Glc, Siaα2-3Gal, Siaα2-3 and Siaα2-3GalNAc recognized by MAL-II, terminating in GalNAcα/β1-3/6Gal recognized by WFA and αGalNAc, αGal, anti-A and B recognized by GSI-I to normal levels in the pancreas of HFD-STZ-induced diabetic mice. This work may provide new targets for the future discovery of potential biomarkers to evaluate the efficacy of food-derived antidiabetic drugs based on precise alterations of glycopatterns in DM.
Read full abstract