We have recently observed that nanomolar concentrations of exogenously added somatomedin-C (Sm-C) are capable of synergizing with FSH in the induction of cultured rat granulosa cell progesterone biosynthesis and LH receptors without altering granulosa cell survival or replication. To further characterize the cytodifferentiative properties of Sm-C, we have undertaken to investigate whether the acquisition of granulosa cell aromatase activity is also subject to modulation by this intraovarian peptide. Granulosa cells from immature hypophysectomized diethylstilbestrol-treated rats were initially cultured for up to 3 days in an androstenedione-free medium, during which time aromatase activity was induced by FSH in the absence or presence of Sm-C (treatment interval). At the conclusion of this period, the cells were washed and reincubated for an additional 8-h test interval, during which time aromatase activity was estimated. Basal aromatase activity, as assessed by the conversion of unlabeled androstenedione (10(-7) M) to radioimmunoassayable estrogen, was negligible, remaining unaffected by treatment with highly purified Sm-C (50 ng/ml) alone. However, concurrent treatment with Sm-C (50 ng/ml) produced a 7.0-fold increase in the FSH (100 ng/ml; NIH FSH S14)-stimulated accumulation of estrogen. Similarly, Sm-C produced a 6.1-fold increase in FSH-induced aromatase activity, as assessed by the stereospecific generation of tritiated water from [1 beta-3H]androstenedione substrate. Sm-C-potentiated aromatase activity was dose and time dependent, with an apparent median effective dose of 5.0 +/- 1.9 (+/- SE) ng/ml and a minimal time requirement of 24 h or less, but was independent of the FSH dose employed. Although bovine insulin and multiplication-stimulating activity, like Sm-C, proved capable of augmenting aromatase activity (albeit at a substantially reduced potency), little or no effect was observed for either porcine or rat relaxin, a distantly related member of the insulin-like growth factor family. Examination of the apparent kinetic parameters of the aromatase enzyme revealed that the Sm-C-mediated potentiation of aromatase activity was due to enhancement of the apparent maximal reaction velocity, but not substrate affinity (Km = 2.8 X 10(-8) M). Our findings indicate that nanomolar concentrations of exogenously added Sm-C synergize with FSH in the enhancement of the maximal reaction velocity, but not Km, of granulosa cell aromatase in a dose- and time-dependent fashion.(ABSTRACT TRUNCATED AT 400 WORDS)