Abstract We present results from commissioning observations of the mid-IR instrument, MIRAC-5, on the 6.5 m MMT telescope. MIRAC-5 is a novel ground-based instrument that utilizes a state-of-the-art GeoSnap (2–13 µm) HgCdTe detector with adaptive optics support from MAPS to study protoplanetary disks, wide-orbit brown dwarfs, planetary companions in the contrast-limit, and a wide range of other astrophysical objects. We have used MIRAC-5 on six engineering observing runs, improving its performance and defining operating procedures. We characterize key aspects of MIRAC-5's performance, including verification that the total telescope, atmosphere, instrument, and detector throughput is approximately 10%. Following a planned dichroic upgrade, the system will have a throughput of 20% and background limiting magnitudes (for SNR = 5 and 8 hr exposure times) of 18.0, 15.6, and 12.6 for the L’, M’, and N’ filters, respectively. The detector pixels experience 1/f noise but, if the astrophysical scene is properly modulated via chopping and nodding sequences, it is less than 10% the Poisson noise from the observed background in an 85 Hz frame. We achieve close to diffraction-limited performance in the N-band and all bands are expected to reach diffraction-limited performance following the adaptive optics system commissioning. We also present an exposure time calculator calibrated to the on-sky results. In its current state, MIRAC-5 will be capable of achieving several scientific objectives including the observation of warm wide-orbit companions. Once the adaptive optics is commissioned and a coronagraph installed in 2025, MIRAC-5 will have contrast-limited performance comparable to JWST, opening new and complementary science investigations for close-in companions.
Read full abstract