Abstract Purpose: A key factor for the success or failure of a dental implant is the manner of stresses transferred to the surrounding bone. Parallel to this situation, cantilever extensions where it is not possible to place another implant, would cause greater stress and it should be avoided if possible. Manufacturers and clinicians try to develop new implant designs and superstructure materials to reduce the stresses around the implant and supporting bone tissue. This study analyzed the influence of superstructure materials and implant designs on stress distribution around dental implants supporting cantilever restoration under loading conditions. Materials and Methods: Three-dimensional finite element models of a 3-unit cantilever bridge were subjected to 150 N occlusal load to evaluate two different superstructure materials (conventional metal ceramic, fiber reinforced composite) and two different implant designs, cylinder type (Institut Straumann AG, Waldenburg, Switzerland) and cylinder type with micro threads around implant neck (Astra Tech AB, Mölndal, Sweden). To evaluate the distribution of stresses within the bone surrounding the implants, 3-dimensional finite element analysis was conducted using four mathematical models of unilateral 3-unit cantilever fixed partial dentures supported by two implants. Results: The stress distribution patterns and stress values were similar and stress concentrations were similar in both restoration materials. The highest stress concentrations were around the adjacent ITI implant, which supports the conventional metal porcelain restoration. Conclusions: Although, there was no significant difference in stress distribution between fiber reinforced composite (FRC) and conventional metal porcelain, stress values were lower in FRC restorations. The Astra-Tech micro-thread design reduced the stress that was distributed throughout the implant body, but it should be noted that the peak stress was still present on the implant neck.
Read full abstract