K-Nearest Neighbors is a commonly used classification technique that can be categorized into instance-based classification method. The performance of KNN is mostly determined by the size of the training data. This research compared and analyzed KD-Tree and Array data structures on KNN implementation. Dataset used in this research has large multidimensional features. From the experiment conducted we can conclude that KD-Tree data structure has better and relatively stable performance compared to Array data structure.
Read full abstract