Right-handed neutrinos (RHN) destabilize the electroweak vacuum by increasing its decay rate. In the SM, the latter is dominated by physics at the RG scale at which λ reaches its minimum, μ∗SM\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\mu}_{\\ast}^{\ extrm{SM}} $$\\end{document} ∼ 1017 GeV. For large neutrino Yukawa coupling Yν, RHNs can push μ* beyond the Planck scale, implying that gravitational effects need to be taken into account. In this work, we perform the first comprehensive study of electroweak vacuum metastability in the type-I seesaw mechanism including these effects. Our analysis covers both low- and high-scale seesaw models, with two as well as three RHNs and for multiple values of the Higgs’ non-minimal coupling to gravity. We find that gravitational effects can significantly stabilize the vacuum, leading to weaker metastability bounds. We show that metastability sets the strongest bounds for low-scale seesaws with MN> 1 TeV. For high-scale seesaws, we find upper bounds on the allowed masses for the RHNs, which are relevant for high-scale leptogenesis. We also point out that Tr(Yν†\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {Y}_{\ u}^{\\dagger } $$\\end{document}Yν), which is commonly used to express these metastability bounds, cannot be used for all of parameter space. Instead, we argue that bounds can always be expressed reliably through Tr(Yν†\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {Y}_{\ u}^{\\dagger } $$\\end{document}YνYν†\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {Y}_{\ u}^{\\dagger } $$\\end{document}Yν). Lastly, we use this insight to develop a new technique for an easier RG analysis applicable to scenarios with degenerate RHN masses.
Read full abstract