Structural Fe in phyllosilicates represents a crucial and potentially renewable reservoir of electron equivalents for contaminants reduction in aquatic and soil systems. However, it remains unclear how in-situ modification of Fe redox states within Fe-bearing phyllosilicates, induced by electron shuttles such as naturally occurring organics, influences the fate of contaminants. Herein, this study investigated the processes and mechanism of Cr(VI) reduction on two typical Fe(II/III)-bearing phyllosilicates, biotite and chlorite, in the presence of cysteine (Cys) at circumneutral pH. The experimental results demonstrated that Cys markedly enhanced the rate and extent of Cr(VI) reduction by biotite/chlorite, likely because of the formation of Cr(V)-organic complexes and consequent electron transfer from Cys to Cr(V). The concomitant production of non-structural Fe(II) (including aqueous Fe(II), surface bound Fe(II), and Cys-Fe(II) complex) cascaded transferring electrons from Cys to surface Fe(III), which further contributed to Cr(VI) reduction. Notably, structural Fe(II) in phyllosilicates also facilitated Cr(VI) reduction by mediating electron transfer from Cys to structural Fe(III) and then to edge-sorbed Cr(VI). 57Fe Mössbauer analysis revealed that cis-coordinated Fe(II) in biotite and chlorite exhibits higher reductivity compared to trans-coordinated Fe(II). The Cr end-products were insoluble Cr(III)-organic complex and sub-nanometer Cr2O3/Cr(OH)3, associated with residual minerals as micro-aggregates. These findings highlight the significance of in-situ produced Fe(II) from Fe(II/III)-bearing phyllosilicates in the cycling of redox-sensitive contaminants in the environment.
Read full abstract