A low insertion-loss single-pole double-throw switch in a standard 0.18-/spl mu/m complementary metal-oxide semiconductor (CMOS) process was developed for 2.4- and 5.8-GHz wireless local area network applications. In order to increase the P/sub 1dB/, the body-floating circuit topology is implemented. A nonlinear CMOS model to predict the switch power performance is also developed. The series-shunt switch achieves a measured P/sub 1dB/ of 21.3 dBm, an insertion loss of 0.7 dB, and an isolation of 35 dB at 2.4 GHz, while at 5.8 GHz, the switch attains a measured P/sub 1dB/ of 20 dBm, an insertion loss of 1.1 dB, and an isolation of 27 dB. The effective chip size is only 0.03 mm/sup 2/. The measured data agree with the simulation results well, including the power-handling capability. To our knowledge, this study presents low insertion loss, high isolation, and good power performance with the smallest chip size among the previously reported 2.4- and 5.8-GHz CMOS switches.