An event-triggered (ET) neural-networks (NNs) adaptive output-feedback control approach is proposed for a class of input-saturated strict-feedback nonlinear systems with external disturbance. Compared with overall existing event-triggered control strategies, which are free from control input nonlinearities and suffer from the explosion of complexity, the proposed event-triggered-based NNs controller is able to handle system input saturation along with completely avoiding the complexity explosion problem. First, by introducing alternative state variables, and by implementing a low-pass filter, the difficulty arising from the cascading of the input-saturated strict-feedback system has been avoided. Thus, the system is converted to the normal canonical system, for which the controller synthesis is much simpler without resort to traditional back-stepping approach. Then, an observer is adopted to estimate the unknown states of the newly derived canonical system based on strictly positive real theory. In the design procedure, the unknown nonlinear functions are approximated by NNs to design a baseline controller, for which an additional robust term is embedded to deal with the input saturation nonlinearity, unknown disturbances and approximation errors using only two adaptive parameters. The proposed ET adaptive NNs control scheme is shown to guarantee the convergence of the output of the system to a small neighborhood of the origin along with the boundedness of all signals in the closed loop. Finally, simulation examples are presented to show the effectiveness of the proposed controller.
Read full abstract