Atmospheric water vapor plays an important role in the water cycle, especially in arid Central Asia, where precipitation is invaluable to water resources. Understanding and quantifying the relationship between water vapor source regions and precipitation is a key problem in water resource research in typical arid Central Asia, Northern Xinjiang. However, the relationship between precipitation and water vapor sources is still unclear of snow season. This paper aimed at studying the role of water vapor source supply in the Northern Xinjiang precipitation trend, which was investigated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The results showed that the total water vapor contributed from Western Eurasia and the North Polar area presented upward trends similar to the precipitation change trend, which indicated that the water vapor contribution from the two previous water vapor source regions supplied abundant water vapor and maintained the upward precipitation trend from 1980 to 2017 in Northern Xinjiang. From the climatology of water vapor transport, the region was controlled by midlatitude westerlies and major water vapor input from the western boundary, and the net water vapor flux of this region also showed an annual increasing trend. Western Eurasia had the largest moisture percentage contribution to Northern Xinjiang (48.11%) over the past 38 years. Northern Xinjiang precipitation was correlated with water vapor from Western Eurasia, the North Polar area, and Siberia, and the correlation coefficients were 0.66, 0.45, and 0.57, respectively. These results could aid in better understanding the water cycle process and climate change in this typical arid region of Central Asia.
Read full abstract