An experimental study for investigating the delamination behaviour of 3D woven composite T-joints with weave variations and optimising weave architectures is carried out. This study involves 10 types of crossing warp architectures at the junction. Quasi-static tensile load is applied to two flanges of 3D woven composite T-joints to evaluate the in-plane mechanical performance. The crossing warp architecture effectively improves the in-plane mechanical performance. Results indicate a significant influence of crossing warp arrangements on failure modes of the 3D woven composite T-joints. The use of internal crossing warp architectures leads to severe delamination in the 3D woven composite T-joints while the composite T-joints with 3D woven external crossing warps primarily fail due to the debonding of fibres and matrix and fibre breakage. The optimal weave architecture for 3D woven composite T-joints is confirmed by analysing the in-plane mechanical behaviour with different crossing warp arrangements and proportions. Regardless of the crossing warp proportions, the external crossing warp architectures outperformed their internal counterparts in resisting delamination, resulting in a maximum increase of 68.75 %, 30.04 % and 116.81 % in modulus, strength and failure strain respectively.
Read full abstract