Abstract

The piezoresistive properties of fiber-based embedded sensors across tow, fabric, and laminate scales offer opportunities for their efficient application in fiber reinforced polymer composite (FRPC) structures. This study involves the multi-scale characterization of rGO-coated glass fiber tows, fabric, and laminates produced via vacuum assisted resin transfer molding (VARTM). The study demonstrates how fiber type, areal weight, and architecture affect piezoresistivity in rGO-coated glass fiber-based sensors subjected to in-plane tensile loading. In this study, rGO-coated glass fiber tows, with three linear densities (138, 1200, 1232 TEX), were examined. Fabric-level sensors, including plain weave (PW), and quadriaxial (QUAD), with areal densities of 200, 600, and 807g/m2 were also studied. For comparison, laminates using UD carbon fabrics (300g/m2) were employed as embedded piezoresistive sensors in the glass fiber-based laminates. It has been shown that rGO-coated sensors with lower areal weights outperformed all other sensor types in terms of their piezoresistive characteristics. This study suggests that piezoresistive sensors offer significant potential for use in load-bearing structural applications which can be further enhanced by investigating their lower scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.