InP is a III-V compound semiconductor with a zinc-blende crystal structure, widely used in optical communications, high-frequency millimeter-wave devices, optoelectronic integrated circuits, and solar cells. During the growth of VGF-InP single crystals, defects such as twinning, dislocations, and polycrystals are prone to occur. Experimental research on the cooling rate, an important control condition during the growth process, was conducted. By analyzing a large amount of discrete cooling data from the premium InP production and using spherical fitting algorithms for numerical analysis, the optimal cooling curve was obtained. Forward and reverse experimental verification results show that by adjusting the cooling rate at each growth stage, the recurrence of twinning and dislocations was successfully improved. Increasing the cooling rate during the shouldering process helps suppress intrinsic twinning but tends to increase dislocation density during the equal diameter stage process, leading to dislocation proliferation. Therefore, while increasing the cooling rate during shouldering, it is necessary to appropriately reduce the cooling rate during the equal diameter stage process to effectively suppress dislocation proliferation. By precisely controlling the temperature gradient and cooling rate inside the furnace, the thermal field conditions during the crystal growth process can be optimized, significantly improving the quality of InP single crystals.
Read full abstract