This purpose of this investigation was to determine the influence of experimental diabetes (3 months) on the responsiveness of rat isolated atria to alpha 1-adrenoceptor stimulation by phenylephrine. Diabetes was chemically induced with streptozotocin (65 mg/kg i.v.) in 42- to 43-day-old, nonfasted male Sprague-Dawley derived rats. Chronotropic (right atria) and inotropic (left atria) indices were recorded in response to alpha 1-adrenoceptor stimulation by phenylephrine. These experiments were performed in the presence of beta-adrenoceptor antagonism (timolol). Isolated right atria from diabetic rats demonstrated a greater increase in heart rate in response to phenylephrine than did corresponding control atria. Left atria were supersensitive (decrease in EC50 values) and hyperresponsive to alpha 1-adrenoceptor stimulation by phenylephrine when compared with stimulation of control left atria. Diabetic left atria in response to phenylephrine were observed to exchange more radioactive calcium (45Ca2+) than control left atria, whereas both diabetic and control left atria exchanged the same amount of 45Ca2+ during basal contractile conditions. Phenylephrine had no effect on 45Ca2+ efflux from either diabetic or control atria. These results indicate that 3 months of uncontrolled experimental diabetes in the rat produces an enhancement of alpha 1-adrenoceptor activation of isolated atria, and that there is an alteration in Ca2+ mobilization which may contribute to the enhanced receptor activation.