Membrane-based organic solvent separations promise a low-energy alternative to traditional thermal separations but require advanced materials that operate reliably in chemically aggressive environments. While inorganic membranes can withstand demanding conditions, they are costly and difficult to scale. Polymeric membranes, such as polymers of intrinsic microporosity, are easily manufactured into form factors consistent with large-scale separations (e.g., hollow fibers), but perform poorly in aggressive solvents. Here, a new post-fabrication membrane modification technique, vapor phase infiltration (VPI) is reported that infuses polymer of intrinsic microporosity 1 (PIM-1) with inorganic constituents to improve stability while generally maintaining the polymer’s macroscale form factor and microporous internal structure (Figure 1). The atomic-scale metal oxide networks within these hybrid membranes protect PIM-1 from swelling or dissolving in organic solvents including: tetrahydrofuran, dichloromethane, and chloroform (Figure 2a). This atomic-scale metal oxide network further decreases the molecular weight cutoff (MWCO; the smallest molecular weight the membrane “successfully” rejects) in n-heptane and toluene from a MWCO of about 600 g/mol for pristine PIM-1 thin film composite membranes to 204 g/mol for hybrid AlOx/PIM-1 membranes (Figure 2b). The hybrid membranes further retain this MWCO and high levels of rejection (>95%) in solvents that traditionally swell or even dissolve pristine PIM-1 (such as ethanol and tetrahydrofuran). The decrease in MWCO and increase in stability of AlOx/PIM-1 hybrid membranes allows them to perform separations not only between solutes and solvents, but also separations of more challenging systems such as those comprising multiple solvents. For example, the hybrid AlOx/PIM-1 membranes are capable of enriching the toluene concentration in a mixture of 90 wt% toluene, 5 wt% 1,3,5-triisopropylbenzene, and 5 wt% 1,3-diisopropylbenzene from 90.0 wt% to 97.8 ± 0.3 wt%. In this talk, we will discuss the chemical mechanisms of the infiltration process that we believe create the hybrid structures necessary to support this enhanced stability and separation performance. Figure 1
Read full abstract