This study aimed to elucidate the bacteriological events occurring within the gut of Calliphora vicina, selected as the European representative of blow flies held responsible for the spread of anthrax during epidemics in certain parts of the world. Green-fluorescent-protein-carrying derivatives of Bacillus anthracis were used. These lacked either one of the virulence plasmids pXO1 and pXO2 and were infected, or not infected, with a worm intestine phage (Wip4) known to influence the phenotype and survival of the pathogen. Blood meals were prepared for the flies by inoculation of sheep blood with germinated and, in case of pXO2+ strains, encapsulated cells of the four B. anthracis strains. After being fed for 4 h an initial 10 flies were externally disinfected with peracetic acid to ensure subsequent quantitation representing ingested B. anthracis only. Following neutralization, they were crushed in sterile saline. Over each of the ensuing 7 to 10 days, 10 flies were removed and processed the same way. In the absence of Wip4, strains showed steady declines to undetectable in the total B. anthracis counts, within 7–9 days. With the phage infected strains, the falls in viable counts were significantly more rapid than in their uninfected counterparts. Spores were detectable in flies for longer periods than vegetative bacteria. In line with the findings in both biting and non-biting flies of early workers our results indicate that B. anthracis does not multiply in the guts of blow flies and survival is limited to a matter of days.