Vortex spinning technology adopts a high-speed swirling airflow to rotate the fibers with open-ends to form yarn with real twists. The airflow behavior within the nozzle has a great effect on the yarn-formation process. In this study, a three-dimensional calculation nozzle model and corresponding three-dimensional airflow region model were established to enable the numerical calculation; airflow behavior—pressure, velocity, and the turbulent airflow field, and the streamline of airflow—was investigated in the presence of fiber bundles within the vortex spinning nozzle. Hybrid hexahedral/tetrahedral control volumes were utilized to mesh the grids in the calculation region. To consider airflow diffusion and convection in the nozzle, the Realizable k- ε turbulence model with wall function was adopted to conduct the calculation. Dynamic and static pressure values were obtained by numerical analysis to predict the action of the inner surface of nozzle and the wall resistance on the high-speed swirling airflow. The numerical simulation of dynamic airflow behavior can generate great insight into the details of airflow behavior and its distribution characteristics, and is helpful for understanding the spinning mechanism and promoting optimization of the spinning process.
Read full abstract