The objective of this project is to integrate a farm-scale bio-desulfurization facility with a novel biogas hollow fibre adsorption module for biogas desulfurization and bio-natural gas production. In this study, the desulfurization experimental results showed that the bio-desulfurization system can remove 96.7 ± 6% of H2S from the biogas after an approximately two-month enrichment period. The average CH4, N2, and CO2 concentrations in raw biogas were 63.4, 15.2, and 21.1%, respectively. As for biogas upgrading experiments, the inlet biogas flow rates were applied from 5 to 20 L/min. The removal efficiency of CO2 under all biogas flow rates was 100%. Meanwhile, methane was promoted from 60% to nearly 94% (i.e. 57% increase in methane concentration). The replacement of anthracite and coking coal by upgraded biogas might reduce 44.4% and 42.5% of CO2 equivalent, respectively. The achievement of this project pursues the mitigation of carbon dioxide emissions by using upgraded pig biogas which can be enlarged and extended to all decentralized pig farms worldwide.
Read full abstract