Abstract
AbstractThe objective of this project is to integrate a domestic photocatalytic desulphurization facility with a biogas upgrading module and try to develop a system for biogas desulphurization and upgrading under ambient conditions. Four photocatalytic desulphurization reactors (PDRs) and one activated carbon reactor (ACR) were applied for biogas desulphurization and filtration under ambient conditions. Moreover, a hollow fibre carbon dioxide (CO2) adsorption module was applied for biogas upgrading. The operation pressure of the PDR and ACR was under ambient pressure. Results showed that hydrogen sulphide removal efficiency of the photocatalytic desulphurizer was about 0.99–1.00 (v/v) under the inlet biogas flow less than 5 litres/min and the concentration of inlet hydrogen sulphide was lower than 5600 mg/m3. For desulphurized biogas upgrading, the removal efficiency of CO2 was higher than 0.90 (v/v) under the outlet biogas flow was 1 litre/min (i.e. inlet biogas flow was about 2 litres/min). However, the ratio of methane in the upgrading biogas was lower than 0.90 (v/v). Thus, nitrogen gas removal cartridges will be integrated with the biogas upgrading module to promote methane concentration in the upgraded biogas.
Highlights
The novel photocatalytic wastewater treatment system was developed and applied for dairy cattle wastewater treatment with a simple titanium dioxide (TiO2) sol–gel preparation protocol by the research team of National Taiwan University (NTU) (Su et al, 2018)
The two acrylic cuboids were packed with a mixture of Rasching rings (Sheng-Fa Plastics, Inc., Taiwan) and TiO2-coated light-expanded clay aggregates (LECA) (Su et al, 2013) (Fig. 2)
All photocatalytic desulphurization reactors (PDRs) used for any time course experiments of this study were packed with Rasching rings and TiO2-coated LECA beads
Summary
The novel photocatalytic wastewater treatment system was developed and applied for dairy cattle wastewater treatment with a simple titanium dioxide (TiO2) sol–gel preparation protocol by the research team of National Taiwan University (NTU) (Su et al, 2018). The photocatalytic treatment technique (ultraviolet/titanium dioxide/silicon dioxide (UV/TiO2/SiO2)) had been applied to treat certain sulphur-containing compounds such as hydrogen sulphide (H2S), C2H6S (dimethyl sulphide, DMS) and C2H6S2 (dimethyl disulphide, DMDS) (Canela et al, 1998; Nishikawa and Takahara, 2001). Results showed that the H2S removal efficiency was higher than 0.99 (v/v) when the inlet H2S concentrations of 46.2–1197 mg/m3 under sufficient O2 conditions. There was about 0.95 (v/v) of sulphate adsorbed on the TiO2 surface of the reactor and only about 0.0002 (v/v) of sulphate ion was detected in the reactor effluent when the reactor was working under higher H2S concentrations (e.g. 840 mg/m3) (Canela et al, 1998)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.