Osteosarcoma conventional chemotherapeutics are known for their side effects, limited options, and induction of drug resistance. This creates the need to develop new therapeutics capable of effectively destroying cancer cells with low toxicity, improving patient survival rate and their life quality. This work reports a novel drug delivery nanoplataform made of Natural Melanin Nanoparticles (MNPs), obtained from Sepia officinalis ink, with 99% incorporation efficiency of doxorubicin (Dox) without the use of non-toxic solvents. A significant photothermal effect was shown by a 36ºC increment after 10 min of laser irradiation, surpassing reported values for synthetic melanin. A sustained drug release of ca. 23% with photothermal stimuli was observed, compared to 15% without stimuli, after 48 h. This nanoplatform is obtained as a food industry side product, which makes it a natural cost-effective biomedical material. Natural MPs were applied in an osteosarcoma cell line (SaOs-2), and internalized by the cells in less than 2 h, showing cytocompatibility up to 1000 µg/mL after 72 h of contact with cells. On the contrary, when natural MNPs loaded with Dox (Dox-MNPs) were placed in contact with the SaOs-2 cells and were simultaneously receiving NIR light it was observed a 93% reduction in cancer cells in 48 h, revealing a synergistic effect between chemotherapy and phototherapy. To our knowledge this is the first time that natural MNPs extracted from Sepia officinalis were tested on an osteosarcoma cell line as chemo-photothermal agent, showing these NPs are an effective, cost-effective, reproducible, non-toxic nanoplatform for osteosarcoma treatment using combined effects.
Read full abstract