Based on a self-biased architecture, this paper presents a novel adaptive fast-locking, wide operating range and low-jitter phase-locked loop (PLL). A current injection and adaptive bandwidth technology with minimum area overhead is employed to speed up the loop equilibrium acquisition process, without any adverse impact on the steady-state loop dynamics and the jitter performance. The proposed start-up circuit resets the loop to an appropriate initial state in order to shorten the initial ramp-up interval of the voltage-controlled oscillator (VCO), also resulting in cutting down the pull-in time. In addition, a proportional factor is introduced to give some kind of flexibility in the circuit design optimization. The proposed adaptive fast-locking self-biased PLL (AFL-SPLL) is designed and realized in a prototype based on TSMC 28 nm CMOS process, having a supply voltage of 0.9 V and an area of 0.0281 mm2. This PLL demonstrates a tuning range of 1 to 3 GHz and power consumptions from 0.91 mW at 1 GHz to 4.6 mW at 3 GHz operating frequency. The experimental results show that the capture process has been accelerated by up to 84.7% over large division ratios, yet the capture performance did not deteriorate at all for small division ratios. Meanwhile, the circuit implementation gave almost no area increase and yet achieved a reduction in the lock-in time of about 6.5 times, namely from 23.5 μs (without the adaptive locking) to only 3.6 μs (with the adaptive locking) on the maximum operation frequency condition of 3 GHz.