The magnetic field dependence of the spin polarization in a photoexcited rigid chromophore-radical conjugate is theoretically investigated. The excitation of the chromophore-radical conjugate often populates the metastable doublet and quartet states formed by the interactions of the unpaired electrons of the triplet chromophore and the radical. The intensities of the +1/2 ↔ - 1/2 transitions of the doublet and quartet manifolds are sensitive to the ratio jω = 3J/ω0 between the triplet-doublet exchange interaction J and the Zeeman energy ω0. It is shown that the analytical expressions of these intensities previously found for the triplet mechanism of the initial spin polarization can be expanded and applied to a broader class of compounds that may have other intersystem crossing pathways of the depopulation of the excited singlet state of the chromophore. It is also shown that the exchange interaction can be evaluated not only by comparing the electron paramagnetic resonance spectra obtained in different microwave frequency bands but also by comparing the data obtained in the same microwave band but with a shift of the frequency of the resonator. The results obtained broaden the potential applications of the previously proposed approach for analyzing the correlation between the exchange coupling and the distance separating the radical and the chromophore spins, as well as the structure of the bridge connecting their fragments.
Read full abstract