Abstract

Quantum kinetic equations of motion for the description of the exciton spin dynamics in II-VI diluted magnetic semiconductor quantum wells with laser driving are derived. The model includes the magnetic as well as the nonmagnetic carrier-impurity interaction, the Coulomb interaction, Zeeman terms, and the light-matter coupling, allowing for an explicit treatment of arbitrary excitation pulses. Based on a dynamics-controlled truncation scheme, contributions to the equations of motion up to second order in the generating laser field are taken into account. The correlations between the carrier and the impurity subsystems are treated within the framework of a correlation expansion. For vanishing magnetic field, the Markov limit of the quantum kinetic equations formulated in the exciton basis agrees with existing theories based on Fermi's golden rule. For narrow quantum wells excited at the $1s$ exciton resonance, numerical quantum kinetic simulations reveal pronounced deviations from the Markovian behavior. In particular, the spin decays initially with approximately half the Markovian rate and a nonmonotonic decay in the form of an overshoot of up to $10%$ of the initial spin polarization is predicted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call