BackgroundStarch is a major component of carbohydrates and a major energy source for monogastric animals. Starch is composed of amylose and amylopectin and has different physiological functions due to its different structure. It has been shown that the energy supply efficiency of amylose is lower than that of amylopectin. However, there are few studies on the effect of starch structure on the available energy of pigs. The purpose of this study was to measure the effect of different structures of starch in the diet on the net energy (NE) of pigs using a comparative slaughter method and to establish a prediction equation to estimate the NE of starch with different structures. Fifty-six barrows (initial BW 10.18 ± 0.11 kg) were used, and they were housed and fed individually. Pigs were divided into 7 treatments, with 8 replicates for each treatment and 1 pig for each replicate. One of the treatments was randomly selected as the initial slaughter group (ISG). Pigs in the remaining treatments were assigned to 6 diets, fed with basic diet and semi-pure diets with amylose/amylopectin ratio (AR) of 3.09, 1.47, 0.25, 0.15 and 0.12, respectively. The experiment lasted for 28 d.ResultsResults showed that compared with the high amylose (AM) groups (AR 3.09 and 1.47), the high amylopectin (AP) group (AR 0.15) significantly increased the final BW, average daily weight gain and average daily feed intake of pigs (P < 0.05), but the F:G of the AM group was lower (P < 0.01). In addition, AR 0.15 and 0.12 groups have higher (P < 0.01) nutrient digestibility of dry matter, crude protein, gross energy and crude ash. Meanwhile, compared with other groups, AR 0.15 group has a higher (P < 0.05) NE intake and energy retention (RE). The regressive equation for predicting with starch structures was established as RE = 1,235.243 − 48.298AM/AP (R2 = 0.657, P = 0.05).ConclusionsIn conclusion, NE intake and RE of pigs augmented with the increase of dietary amylopectin content, indicating that diets high in amylopectin were more conducive to promoting the growth of pigs in the late conservation period.