Microbial reduction of structural Fe(III) in nontronite (NAu-2) was studied in batch cultures under non-growth condition using Shewanella putrefaciens strain CN32. The rate and extent of structural Fe(III) reduction was examined as a function of electron acceptor [Fe(III)] and bacterial concentration. Fe(ll) sorption onto NAu-2 and CN32 surfaces was independently measured and described by the Langmuir expression with the affinity constant (log K) of 3.21 and 3.30 for NAu-2 and bacteria, respectively. The Fe(II) sorption capacity of NAu-2 decreased with increasing NAu-2 concentration, suggesting a particle aggregation effect. An empirical equation for maximum sorption capacity was derived from the sorption isotherms as a function of NAu-2 concentration. The total reactive surface concentration of Fe(III) was proposed as a proxy for the "effective" or bioaccessible Fe(III) concentration. The initial rate of microbial reduction was first-order with respect to the effective Fe-(III) concentration. A kinetic biogeochemical model was assembled that incorporated the first-order rate expression with respect to the effective Fe(III) concentration, Fe(II) sorption to cell and NAu-2 surfaces, and the empirical equation for maximum sorption capacity. The model successfully described the experimental results with variable NAu-2 concentration. The initial rate of microbial reduction of Fe(III) in NAu-2 increased with increasing cell concentration from 10(2) up to approximately 10(8) cells/mL, and then leveled off with further increase. A saturation-type kinetics with respect to cell concentration was required to describe microbial reduction of Fe(III) in NAu-2 as a function of cell concentration. Overall, our results indicated that the kinetics of microbial reduction of Fe(III) in NAu-2 can be modeled at variable concentration of key variables (clay and cell concentration) by considering the surface saturation, Fe(II) production, and its sorption to NAu-2 and cell surfaces.
Read full abstract