The removal of pesticide (ethoprophos) from aqueous solution using a natural biosorbent such as chitosan (CH) prepared from a biopolymer waste obtained from marine industry was studied. The Fourier Transform Infrared Spectroscopy (FTIR), Scanning electron microscopy (SEM), and X-ray diffraction spectroscopy (XRD) were used to study the structure of the adsorbent. The biosorption studies were carried out under various parameters, such as biosorbent dose, initial pesticide concentration and contact time. The experimental results show that the removal percentage of ethoprophos increased from 85.693% to 89.234%, as adsorbent dose (CH) increased from 0.02 to 0.1 g/100ml. The equilibrium uptake was increased with an increase in the initial pesticide concentration in solution. Biosorption kinetic data were fitted well with the pseudo-second order kinetic model. The experimental isotherms data were analyzed using Freundlich, Langmuir, Temkin and Dubinin-Radushkevich (D-R) isotherm equations. The best fit was obtained by Freundlich isotherm with high correlation coefficients. That the value of energy calculated from the D-R isotherm was 5.56 KJ/mol suggests the adsorption of ethoprophos on Chitosan is physical. All the results indicating CH was chosen as low-cost biosorbent could be applied for the removal of organophosphorous pesticide from aqueous solutions.
Read full abstract