In this study, we irradiated amorphous (A) and semi-crystalline (SC) poly(lactic acid) (PLA) with different UV-C doses up to 2214 kJ/m2. We achieved an average crystallinity of 43 % by heat treatment, which was unaffected by UV-C irradiation. Modulated differential scanning calorimetry showed that crystal polymorphs and the ratio of rigid amorphous and mobile amorphous phases were also unaffected. Using gel permeation chromatography analysis, we showed that the degradation mechanism was noncatalytic random scission, and the initial molar mass was reduced by >90 % at a dose of 2214 kJ/m2 for both A- and SC-PLA samples. Our Raman spectroscopy results indicated that the probability of the formation of oxygen-containing groups increases with increasing UV-C doses. Since we found that the mechanical properties of PLA films can be tailored with UV-C light, we proposed a method to predict the overall tensile curve as a function of the UV-C dose. We also proposed a modified Cross-WLF model to describe the effect of UV-C irradiation on viscosity up to 55 % molar mass reduction. The models allow us to estimate the limits of recyclability and reusability of sterilised PLA products.
Read full abstract