Rockfall is a typical successive hazard with a high incidence rate following primary geological disasters such as landslides, rock avalanches, and debris flows. The lateral dispersion of rockfall is significantly affected by the loose granular cushion layer deposited on slopes. This paper aims to develop a quick estimation model for this effect based on the 3D-DEM (discrete element method) numerical simulations. The DEM model employs particles with different bonding properties to create a modeling double-layer granular slope. The present model is also verified by comparing the data from the antecedent large-scale outdoor rockfall experiment with the numerical simulations. Accordingly, the influences of four factors: the initial horizontal release velocity, the size of the rock mass, the granular cushion thickness, and the slope angle on the lateral dispersion of the rockfall trajectory are analyzed, and the underlying physical mechanism is discussed thoroughly. Ultimately, we identify a nondimensional parameter that demonstrates a strong correlation with the evolution of the lateral dispersion ratio of the rockfall trajectory. Based on this insight, we propose an estimation model for predicting the lateral dispersion of the rockfall trajectory. This model can assist engineering and construction personnel in rapidly determining the lateral dispersion range of the rockfall.
Read full abstract