The performance of the three-dimensional differential geometric guidance law with proportional navigation formation against a target maneuvering arbitrarily with time-varying normal acceleration is thoroughly analyzed using the Lyapunov-like approach. The validation of this guidance law is firstly proved, and then the performance issues such as capturability, heading error control efficiency, line of sight rate convergence, and commanded acceleration requirement are analyzed, under the condition that the missile is initially flying toward the target with a speed advantage. It is proved that an intercept can occur and the line of sight rate and missile commanded acceleration can be limited in certain ranges, if the initial heading error is small and the navigation gain is sufficiently large. The nonlinear relative dynamics between the missile and the target is taken into full account, and the analysis process is simple and intuitive, due to the use of a convenient line of sight rotating coordinate system. Finally, the new theoretical findings are validated by numerical simulations.