Efficiency of hydrogen peroxide production by an ac driven underwater capillary discharge was investigated quantitatively. The concentration of formed hydrogen peroxide was measured by a colorimetric method using a specific reaction between H2O2 and a titanium reagent. The amount of formed H2O2 increases linearly during the first hour of the discharge duration. The initial rate and corresponding total energy yield of H2O2 formation by the capillary discharge were determined for initial electrical conductivity of aqueous solution in the range of 100–500 µS cm−1 and average applied power in the range 30–90 W. It comes out that the total energy yield of H2O2 formation, derived from the initial rate of H2O2 formation and the average applied power, increases linearly with average applied power and that solution conductivity has only a negligible effect on the energy yield. A maximum total energy yield of H2O2 formation of 0.9 g kWh−1 was obtained for a 500 µS cm−1 aqueous solution.