In this paper, titanium dioxide nanoparticles were synthesized on polyacrylonitrile nanofiber membranes via a sol-gel process. Filter structure consisted of a non-woven polyurethane-carbon substrate, polyacrylonitrile nanofiber and titanium dioxide nanoparticles. The concentration of methylene blue dye solution was measured via UV radiation. The filtration efficiency was calculated via Langmuir-Hinshelwood pseudo-first order equations. The results showed that the filtration efficiency of samples using titanium dioxide under UV rays was higher than those without titanium dioxide and UV rays in both immersing and cross-flow processes. Degradation efficiency of the cross-flow system was three times higher than that of immersing method. In the cross-flow process, the effect of three variables-pressure on the membrane, initial concentration of dye solution and pH of the dye solution was studied under UV rays. The highest efficiency obtained was 90.3% by using 1.5 bar pressure, 40 μM initial concentration and pH of 4.1.
Read full abstract