Water eutrophication caused by nitrogen pollution is an urgent global issue that requires attention. The Qingyi River is a typical micro-polluted river in China. In this study, we took this river as the research object to investigate the nitrogen pollution purification capacity of a herbaceous plant, Rumex japonicus Houtt. (RJH). Compared to nitrate nitrogen (NO3−-N) and nitrite nitrogen (NO2−-N), RJH showed better purification performance on total nitrogen (TN), total phosphorus (TP) and ammonia nitrogen (NH4+-N), with a highest removal rate of 37.22%, 52.13%, and 100%, respectively. RJH could completely remove ammonia nitrogen and exhibit excellent resistance to pollutant interference when the initial concentration of ammonia nitrogen in the cultivation devices increased from 1 mg/L to 10 mg/L or in the actual river. This indicated the great application potential of RJH in ammonia nitrogen removal from natural micro-polluted rivers. In addition, combined effects of nitrification of roots, absorption of self-growth, stripping, and others contributed to nitrogen removal by RJH. Particularly, the nitrification of roots played a dominant role, accounting for 73.85% ± 8.79%. High-throughput sequencing results indicate that nitrifying bacteria accounted for over 75% of all bacterial species in RJH. Furthermore, RJH showed good growth status and strong adaptability. The correlation coefficients of its relative growth rate with chlorophyll A and the degradation rate of absorption were 0.9677 and 0.9594, respectively. Our research demonstrates that RJH is one of the excellent varieties for ammonia removal. This provides a very promising and sustainable method for purifying micro-polluted rivers.
Read full abstract