Thin films of silica containing silver nanoclusters have been deposited by magnetron co-sputtering followed by thermal annealing. Laser modification of the mean cluster size was performed using the fourth harmonic of a Nd:YAG laser with energies of between 35 and 125 mJ/cm2. The mean size of the clusters was estimated from the shape of the plasmon resonance band in the optical absorption spectra with the help of a computer simulation based on the Mie theory in static approximation. It was found that laser treatment with fluences above a certain threshold leads to a reduction of the mean size of the clusters and this reduction is greater for greater fluences. After a long treatment with the same fluence the effect saturates. The final mean size of the clusters after saturation depends only on the laser fluence and not on the initial mean cluster size. When lower laser fluences were used it was possible after laser annealing to return the mean cluster size to its initial value by thermal annealing. In this way by using a combination of laser treatment and thermal annealing a predetermined mean cluster size could be achieved. The mechanism of laser-induced cluster-size modification is discussed.
Read full abstract